((7x^2+3x)/5x+9)=12

Simple and best practice solution for ((7x^2+3x)/5x+9)=12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((7x^2+3x)/5x+9)=12 equation:



((7x^2+3x)/5x+9)=12
We move all terms to the left:
((7x^2+3x)/5x+9)-(12)=0
Domain of the equation: 5x+9)!=0
x∈R
We multiply all the terms by the denominator
((7x^2+3x)-12*5x+9)=0
We calculate terms in parentheses: +((7x^2+3x)-12*5x+9), so:
(7x^2+3x)-12*5x+9
Wy multiply elements
(7x^2+3x)-60x+9
We get rid of parentheses
7x^2+3x-60x+9
We add all the numbers together, and all the variables
7x^2-57x+9
Back to the equation:
+(7x^2-57x+9)
We get rid of parentheses
7x^2-57x+9=0
a = 7; b = -57; c = +9;
Δ = b2-4ac
Δ = -572-4·7·9
Δ = 2997
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2997}=\sqrt{81*37}=\sqrt{81}*\sqrt{37}=9\sqrt{37}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-57)-9\sqrt{37}}{2*7}=\frac{57-9\sqrt{37}}{14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-57)+9\sqrt{37}}{2*7}=\frac{57+9\sqrt{37}}{14} $

See similar equations:

| -1/2(-3/2x+6x+1)-3x=-51/4x-1/2 | | 90+45+x=360 | | ​4(3x+12)=−36​ | | (7x^2+3x)/5x+9=12 | | 4/7(21/8x+1/2)=-2(1/7-5/28x | | 1.43x=11.44 | | x=1150+.25x | | 7x+14=-44=9x | | -8x-7+6x=-9x-1 | | 1050=150*h | | -2(-6x+9)=-9x | | 7(x+8)=6(x+3) | | -x/10=8 | | -4x-9+5x=-5x+9 | | 6+3(9x+8)=3 | | |p+1|+3=5 | | -4x-9+5x=-x+9 | | 0.2y=1.2=2.4 | | -6(x-9)=-5(x-2) | | (x+1)^2+10(x+1)+21=0 | | m+18=22 | | -4(-34x+23)=-13(21=2x) | | -7x=-5x+6 | | |5+3x|=1/2 | | -40x-77=-77-40x | | 3(5x-6)=10x+6 | | x-10=2x/3-10/3 | | 6m2+5m=-4 | | 5+3x=1/2 | | x-20)^2+(0-0.05)^2=81 | | 68x-86=39=87x | | x^2-57x=108 |

Equations solver categories